
A CICS/DB2 Legacy Application Takes the Sysplex Plunge

Jodi Perry
William J. Raymond

David J. Young
Amdahl Corporation

What are the issues involved in converting a single region CICS/DB2 application into the multiple regions
needed by CICSPlex/SM? What application code changes are required? What is the cost of adding DB2
datasharing? How does application design influence the cost of DB2 datasharing? This paper attempts to
answer these and other questions by describing the steps taken to upgrade a CICS/DB2 legacy application to
include CICSPlex/SM and DB2 data sharing, and identifying the associated increases in resource
consumption.

INTRODUCTION - INITIAL RESULTS

The target application is used by a public utility to
check the credit status of current and potential
customers before scheduling service updates. The
application is written mainly in COBOL, with some
ASSEMBLER routines, and was originally designed
for use with VSAM and standard 3270 type
character based displays. Over the years, VSAM
was replaced by DB2, and the 3270 displays were
enhanced with a Windows/GUI front end.

The application consists of online and batch
components: a lot of the online work is saved for
later processing at night by the batch component,
with the typical time constraints on the batch
window. If the batch window processing is
delayed, or extended, availability of the online
system may be delayed.

There are several reasons for investigating
CICSPlex/SM and DB2 datasharing for use by this
application. One reason is recoverability: If one
image fails in the Sysplex, the application should
be able to keep running on a different image,
assuming all the restart/recovery procedures are
successfully implemented. Another reason is the
potential reduction in elapsed time provided by
DB2 datasharing: If one image is particularly CPU
constrained, DB2 work could be directed to a
different image with CPU cycles to spare. Or better
yet, two or more members of the datasharing group
could do DB2 work in parallel. This could in turn
lead to reduced batch window time, and thus allow
more up-time for the online portion of the credit
checking application.

On a more global basis, perhaps the most
significant reason for investigating CICSPlex/SM
and DB2 datasharing is to check the viability,
performance, and scalability of online production
applications in a full function parallel Sysplex
environment.

As important as improved recoverability and
availability are to this application, it is equally
important to know the related resource costs of
these features. This paper discusses, in detail, the

performance characteristics of six different online
environments, all operational under MVS/ESA
SP5.2.2 running the Workload Manager. The first
implementation and base case (SR) was a single
CICS region, no CICSPlex or datasharing. Second
(T/A) was a TOR/AOR implementation, no
CICSPlex or datasharing. Third (T/A CP) was a
TOR/AOR implementation with CICSPlex/SM, no
datasharing. Fourth (T/A/A/CP) was a
TOR/AOR/AOR implementation, using the dynamic
transaction routing facility of CICSPlex/SM. Fifth
(T/A/A/CP/DS1) was the same implementation as
four, with one-way datasharing. Sixth
(T/A/A/CP/DS2) was the same implementation as
five, with two-way datasharing. Figure 1 graphs the
CPU seconds per transaction (commit) for the six
environments.

 Figure 1 - CPU Seconds per Transaction

For this application, adding CICSPlex processing
and dynamic transaction routing using MVS Goal
mode processing costs approximately 28% more
CPU per transaction than the base case. Adding
two way DB2 datasharing costs an additional 65%
more CPU per transaction. The final
implementation with CICSPlex/SM and two way
DB2 datasharing costs almost twice the CPU per
transaction as the base case.

RCRMS Application
CPU Seconds per Commit by Address Space

sr t/a t/a/cp t/a/a/cp t/a/a/cp/ds1 t/a/a/cp/ds2
0

0.02

0.04

0.06

0.08

0.0344 0.0362 0.0380
0.0442 0.0454

0.0665

Configuration

CPU Seconds

AOR TOR CMAS MSTR DBM1 IRLM

PB010030

The CPU seconds per transaction are calculated by
summing the CPU times as reported by the RMF
Workload Manager for the various application
address spaces (CICS application regions, CICS
CICSPlex regions and DB2 system address
spaces) and dividing by the number of commits for
the measurement interval.

Figure 2 - Internal Throughput Rates (ITR)

For each test, 1,000 users were logged on and a
transaction driver (TPNS, Teleprocessing Network
Simulator) created transactions which were ramped
up to issuing approximately 2,600 transactions per
minute (43 transactions a second) over a 75-minute
measurement interval. This transaction arrival rate
is approximately five times greater than the
anticipated load for the system. The rate was
increased fivefold in an attempt to plan for unseen
contingencies by stressing the system beyond any
reasonable expectation. Figure 2 graphs the ITRs
for the six environments.

Figure 3 - Central Storage Use

Notice the ITRs in Figure 2 decrease at about the
same rate as the CPU per transaction increases in
Figure 1. The CICSPlex/SM environment with two-
way DB2 datasharing produces approximately 45%
fewer transactions (ITR) than the base case.
Compare this with the 93% increase in CPU per
transaction for the same environments, as shown in
Figure 1.

The added functionality provided by CICSPlex/SM
and DB2 datasharing also increases real storage
use. Figure 3 graphs the average allocated central
storage size for all six environments, indicating a
57% increase in central storage for the final
implementation versus the base case.

The remainder of this paper discusses each
environment in detail, and gives an overview of the
application and its operating environment.

OPERATING ENVIRONMENT

Figure 4 shows a high level overview of the
hardware configuration of the testing environment.
It consists of seven MVS images (six in the
Sysplex) housed on an IBM 9021-9X2, an IBM
9672-R64, an IBM 9672-RX3, and an Amdahl
GS585. Two standalone IBM 9674-C02s, each
with two engines and one gigabyte of memory were
used as coupling facilities. Two coupling facilities
were used to test recoverability in the event one of
the coupling facilities failed.

Figure 4 - Sysplex Operating Environment

RCRMS Application
ITR Comparisons

sr
t/a

t/a/cp
t/a/a/cp

t/a/a/cp/ds1
t/a/a/cp/ds2

0

100,000

200,000

300,000

400,000

500,000

395,113 385,504 368,721

311,160 306,284

217,048

Configuration

ITR

ETR
PB010020

9021
9X2

9672
R64

9672
RX3

GS585
LPAR1 LPAR2 LPAR3 LPAR1 LPAR2

9674-C02

9674-C02

RCRMS Application
Used Central Storage MegaBytes

sr t/a t/a cp t/a/a/cp t/a/a/cp/ds1 t/a/a/cp/ds2
0

200

400

600

800

1,000

1,200

640 661
720 732 765

1007

Configuration

MB

MB
PB010040

Millennium 585

9674-C02

9674-C02EMC 5700-9M44
2 3990-06
 8 chp
 3.5GB cache 2 4-way LPARS

 1.5GB Central
 .5GB Expanded
1 LPAR used

31MB LOCK
31MB SCA
2 LINKS
2 ENGINES

80MB GBP1
80MB GBP2
2 LINKS
2 ENGINES

PB010010

Figure 5 - Millennium Configuration

The credit checking application was tested on one
LPAR of the Amdahl GS585, as shown in Figure 5.
The GS585 was divided into two LPARs; each with
four dedicated CPUs, 1.5 gigabytes of central
storage and .5 gigabytes of expanded storage.
Application and system datasets were housed on
an EMC 5700-9M44, which was serviced by eight
ESCON connections.

MVS/ESA SP5.2.2 was used as the supporting
operating system, with DB2 Version 4 (PDO9642),
CICS/ESA Version 4 (PDO9710), and
CICSPlex/SM Version 1 Release 2 (PDO9709)
used to support the application. Seven key
functions of the credit checking application were
chosen for the exercise. These functions were
spread across four CICS/DB2 transactions. Table
1 profiles the transactions and their distribution.

Table 1 - Transaction Profiles

Table 2 - Transaction Statistics

Although this is a CICS/DB2 implementation, few
DB2 specific operations (like sequential prefetch,
list prefetch, etc.) are invoked, primarily because
DB2 was used to replace VSAM as the access
method. Table 2 lists overall DB2 statistics per
transaction.

At the start of each transaction, a SELECT is
issued against an LTERM table, which keeps track

of the last operation issued for a particular user. At
the end of the transaction, the LTERM table is
updated to reflect the outcome of the transaction.
As we will see later, processing of this LTERM table
proved to be a significant contributor to the
increase in CPU per transaction for the two-way
DB2 datasharing test.

STEP ONE - SINGLE CICS REGION, NO
CICSPLEX, NO DATASHARING

Another key objective of this project was to test the
application in its current state using newer releases
of CICS and DB2. The existing application used
CICS Version 3 and DB2 Version 3, so the first
step was to rebuild the application using the new
subsystems. This was a relatively simple task, just
updating JCL to the new releases. The application
build consisted of 5 major steps: 1) assemble and
link the BMS maps, 2) assemble and link
ASSEMBLER language routines, 3) translate CICS
routines used as COPYLIB members, 4) SQL
precompile, CICS translate, COBOL compile and
link online modules, and 5) DB2 bind the packages
and plan for execution.

The BMS maps were assembled in step 1after
updating the SYSLIB dataset on the assembler
step to point to the new CICS macro library
(DFHMAC). Since the ASSEMBLER language
routines did not reference CICS or DB2 libraries, no
changes were needed to the JCL for step 2. The
CICS COPYLIB members were translated in step 3
after updating the STEPLIB dataset to point at the
new CICS DFHLOAD dataset. The online modules
were produced in step 4 after updating the SQL
precompiler STEPLIB file to point at the new
DSNLOAD dataset, the CICS translator STEPLIB
file to point at the new DFHLOAD dataset, and the
link SYSLIB file to point at the new DFHLOAD.
Finally, the packages and application were bound
after updating the STEPLIB file to point at the new
DSNLOAD dataset.

Since there were no changes required for the CICS
system and application definitions for the single
region implementation, a copy of the old CSD was
obtained using DFHCSDUP, the CICS CSD update
utility. Later experiments involved updating CSD
definitions for transaction routing, CICSPlex
processing, and session/link/network information,
so the CSD extract program supplied as part of the
CICS documentation was used. This program
reads a CSD and produces the corresponding RDO
statements necessary to define the CICS system.

TRAN. SQL GET % OF
CALLS PAGES
WKLD.

ZMEN 10 30 49.5
ZWIN 18 30 40.9
ZSEC 33 72 3.4
ZHIS 13 19 6.2

Selects 8.13 Get pages 31.35
Inserts 1.20 Sync reads 2.27
Updates 1.23 Buffer updates 4.10
Opens/closes 1.91 Pages written 1.26
Fetches 2.56 Async Writes .317

Figure 6 shows the JCL and linkage editor control
statements required to prepare the extract program
for use.

Figure 6 - CSD Extract Preparation

One other slight change involved a new way to
control the number of active tasks for a particular
CICS transaction. In CICS 3.3 a combination of
CMXT and CMXTLIM was used to control the
number of tasks started for a particular transaction
class. For CICS Version 4, CMXT and CMXTLIM
are no longer used but a similar control can be
accomplished via the TRANCLASS parameter.
This identifies one of ten transaction classes
(DFHTCL01-10) to which individual transactions can
be assigned. The MAXACTIVE value, which can
be set via a CEMT operator command, controls the
number of active transactions for a particular
TRANCLASS. For these experiments, the
MAXACTIVE value was increased from 5 to 20.

The basic runtime methodology was as follows.
Start DB2, reset application tables, archive the DB2
log to prevent an archive from occurring during the
measurement, and shut down DB2. Restart DB2,
start CICS, start the CICS/DB2 attachment facility,
assure that DB2 and CICS are recording
performance data at one-minute intervals, start
TPNS to log on 1,000 users. After all 1,000 users
have logged on to CICS and the application, start
releasing users gradually until all 1,000 are active
and issuing transactions (approximately 15
minutes). When all users are logged on and a
steady state is reached, let the measurement run
for an additional 60 minutes. At some point in the
measurement interval (approximately 40 minutes
into the steady state) the DB2 accounting trace is
turned on for 3 minutes to collect
application/transaction statistics. The workload is
shutdown by quiesceing the users, stopping TPNS,
stopping the CICS/DB2 attachment facility,
stopping CICS and finally stopping DB2.
Since transactions ZMEN and ZWIN were issued
over 90 percent of the time (see Table 1), they
were each assigned a minimum of 10 and a
maximum of 30 entry level threads in the RCT.
Transactions ZSEC and ZHIS, which accounted for
3.4% and 6.2% of the workload respectively, were
assigned to one of 60 pool threads. TOKENI=YES

was specified to accurately collect CICS/DB2
transaction data.
Early on in the initial measurements, it seemed that
DB2 was doing significantly more logging than was
expected, based upon the number of log archive
requests. In an effort to reduce logging, the
Vertical Deferred Write Queue Threshold (VDWQT)
was increased from the default of 10% to 50%.
This parameter, which is new with DB2 Version 4,
controls the flushing of buffers to DASD for a single
DB2 application dataset. If one dataset has more
than the default flush limit (10%) of the available
pages in the buffer pool, then that dataset’s pages
are flushed to DASD. At this point I am guessing
that the flushed pages also get logged, but this is
only a guess. After increasing the VDWQT value to
50%, we were at least able to go 75 minutes
without a log archive, which is what we were striving
for.

Table 3 lists overall performance data for the single
region implementation. The capture ratio of almost
90% is typical of DB2 workloads. It has been the
author’s experience that as the percentage of DB2
processing increases, so does the capture ratio.

Table 3 - Overall Statistics

//DOIT EXEC COB2UCL
//COB2.SYSIN DD ……DFHSAMP(DFH0CBDC)
//LKED.SYSLIB DD………COB2.COB2LIB
//LKED.SYSLIN DD
//LKED.SYSLIN DD *
CHANGE EXITEP(BDEFCSD)
INCLUDE CICSLIB(DFHEXCI)
INCLUDE SYSLIB(ILBOSRV)
INCLUDE SYSLIB(ILBOCMM)
INCLUDE SYSLIB(ILBOBEG)
NAME DFH0CBDC(R)

TPNS Response Time .28
TPNS Responses/minute 2631
Total Commits(ETR) 237,068
CPU Busy 60.00%
ITR 395,113
Capture Ratio 89.46%
Per Commit
 CPU seconds .0344
 locks 19.69
 unlocks 1.55
 get pages 31.35
 sync reads 2.27
 buffer updates

4.10
 pages written 1.26
 async writes .31
Average used
 central storage

640MB
 CSA<16M 660KB
 CSA>16M 17.4MB
 SQA<16M 707K
 SQA>16M 13.3MB

Table 4 lists individual transaction statistics,
compiled from the DB2 accounting records.

Table 4 - Individual Transaction Statistics

The I/O rate for this experiment was approximately
866 I/Os a second. Of this total, 343 I/Os a
second were to DASD. Table 4A lists some
CACHE statistics for the EMC DASD containing the
DB2 system and application datasets.

Table 4A – DASD Cache Statistics

The response times are very good, between 3 and
4 milliseconds across all the devices. These values
should be taken with a grain of salt for a couple of
reasons. First, this is the only application using a
tiny portion of the hardware resources available on
the 5700, and second, only a small portion of the
live data used for this test was actually part of the
TPNS script and transaction generation. Even
though the data was being constantly paged in
and out of the DB2 buffer pools, most of the I/Os
were handled via the DASD subsystem’s cache, as
shown by the high hit ratios. In a true production
environment, where all the data is accessible to the
application, more I/Os will have to be satisfied by
going to the device, which will increase average
DASD I/O response time.

Table 4B - XCF CTC Activity

The remainder of the I/O activity (approximately
523 I/Os a second) can be attributed to Sysplex
communication. Table 4B lists the communication
activity among the system under test and the other
five members of the Sysplex. Each image in the
Sysplex communicated with each other via four
dedicated CTC connections, providing plenty of
bandwidth for processing inter-system requests.
The vast majority of the requests are for GRS
processing among the three systems sharing
access to the EMC DASD. During the
measurement interval, the EMC DASD was in use
only by the system under test.

STEP 2 - TOR/AOR, NO CICSPLEX, NO
DATASHARING

Upgrading to a multiple CICS region setup using a
Terminal Owning Region (TOR) and an Application
Owning Region (AOR) required some updates to
the CSD. Specifically, all files and transactions
were defined as remotely existing in the AOR. For
this stage, the transaction routing information is
hard coded; no dynamic transaction routing
programs are involved. ATTACHSEC(IDENTIFY)
was specified for the MRO CONNECTION between
the TOR and the AOR. This is necessary because
the application does some security checking based
on the USERID of the person logged in at the
terminal issuing the transaction.

If ATTACHSEC is not specified, it defaults to
LOCAL. When this is the case, at connection time
between the AOR and the TOR, all USERIDs from
the TOR assume the value of the LINK. When
access is attempted, the application (with the help
of RACF) thwarts the attempt because it is looking
for a valid USERID. ATTACHSEC(IDENTIFY)
assures that the USERID used at logon to the
TOR, is the same USERID passed along to the
AOR. The CONNECTION names and SYSIDNT
values also match for each region, which is a
requirement for CICSPlex/SM.

Although not required for the basic TOR/AOR
change, at this point it was decided to run some
CICS utilities to assure that no intertransaction
affinities exist. This was done in preparation for
CICSPlex/SM processing.

Transaction ZMEN ZWIN ZSEC ZHIS
#Samples 3357 2841 248 514
Class 1 Elapsed “ .2775 .3270 .1602 .0707
Class 1 TCB” .0152 .0167 .0293 .0119
Class 2 Elapsed” .0321 .0247 .0396 .0204
Class 2 TCB” .0133 .0140 .0249 .0101
Selects 6 11 13 7
Inserts 0 2 4 0
Updates 1 1 2 1
Open/Close 1 2 4 1
Fetches 1 3 6 1
BP1 Get Pages 10 12 17 7
BP2 Get Pages 24 22 42 12

CU Read Hit Write Hit Read DASD
Rate Ratio Rate Ratio % Resp.

3220 7.1 .988 0 1.00 100 4ms
3260 77.5 .879 23.4 1.00 76.9 4ms
32A0 4.2 .999 4.0 .894 51.1 4ms
3300 47.1 .869 23.0 1.00 67.2 3ms
3360 8.5 .919 18 .999 32.1 3ms
33A0 4.4 1.00 4.1 .761 51.6 3ms

 SYS1 SYS2 SYS3 SYS4 SYS5 SYS6
SYSGRS 0 0 541K 541K 0 1.1M
SRVDC 10K 8K 7K 7K 15K 24K
SYSMCS 1434 463 79 100 9K 11K
SYSWLM 879 879 879 879 879 4.5K

“An intertransaction affinity is a relationship
between transactions, of a specified duration, that
requires them to be processed by the same AOR.
For example, if you have a pseudo conversation
made up of three separate transactions, and each
transaction passes data to the next transaction in
the sequence via temporary storage, you specify
that all three transactions must be processed by
the same AOR, and that this affinity lasts for the
duration of the pseudo-conversation. (if you did not
define this affinity to CICSPlex/SM, each
transaction would be routed to a different AOR and
would therefore be unable to access temporary-
storage data left by the previous transaction.)”1

Intertransaction affinities do not prohibit an
application from using CICSPlex/SM, they just limit
some of the workload balancing efforts because
multiple transactions must be processed in a single
AOR. If all intertransaction affinities are removed,
than theoretically any AOR can process any
transaction, which makes load balancing efforts
easier to successfully implement.

Geoff Apps, manager of the Enterprise Computing
Center (ECC) did an excellent job of analyzing the
application for affinities with the help of the CICS
Transaction Affinities Utility. This utility can SCAN
load modules for an initial view of possible affinities,
and can also run interactively with the workload in
question, to dynamically DETECT affinities.
Although there are some affinities that the utility
cannot detect, both the SCAN and DETECTOR
runs did not find any, at least not in the code paths
we tested.

Table 5 - Overall Statistics

1 CICSPlex SM Concepts and Planning, p.43

Overall statistics for this implementation are shown
in Table 5. Average CPU seconds per transaction
increased a little over 5% (.0344 versus .0362),
with a drop in ITR of of 2.43%. Central storage
and CSA use stayed about the same. Response
time as recorded by TPNS decreased by .13
seconds, which could be looked at as a slight
improvement, or could be looked at as A
DRAMATIC RESPONSE TIME IMPROVEMENT OF
ALMOST 50%!!!!! You pick.

Individual transaction statistics are shown in Table
6. The only significant difference here is the DB2
class 1 elapsed times for ZMEN and ZWIN, which
increased slightly. CPU times per transaction
remained basically the same as the base case.

Table 6 - Individual Transaction Statistics

STEP 3 - TOR/AOR, CICSPLEX, NO
DATASHARING

Upgrading to the CICSPlex/SM environment
required creating new tasks for the CICSPlex/SM
operating environment, defining the CICSPlex/SM
operating environment, updating existing CICS
CSD definitions, updating existing CICS tables, and
updating existing CICS startup parameters.

Two new tasks required for CICSPlex/SM are the
Coordinating Address Space (CAS) and the
CICSPlex SM Address Space (CMAS). The CAS is
a started task, which provides a TSO interface for
CICSPlex operation. The CMAS is a full blown
CICS region used to manage the CICSPlex. “The
CMAS implements the monitoring, real-time
analysis, workload management, and operations
functions of CICSPlex/SM, and maintains
configuration information about the CICSplexes it is
managing. It also holds information about its own
links with other CMASs. In short, the CMAS is
responsible for the single system image that
CICSPlex/SM presents to the operator.”2

If an existing CICS region is modified for use as a
CMAS, assure that the guidelines for updating
CMAS SIT parameters are followed, in particular

2 CICSPlex SM Concepts and Planning, p. 16

Transaction ZMEN ZWIN ZSEC ZHIS
#Samples 3325 2879 264 491
Class 1 Elapsed “ .3442 .4311 .1707 .0774
Class 1 TCB” .0146 .0171 .0292 .0118
Class 2 Elapsed” .0360 .0321 .0502 .0266
Class 2 TCB” .0124 .0142 .0251 .0101
Selects 6 9 13 7
Inserts 0 1 4 0
Updates 1 1 2 1
Open/Close 1 2 4 1
Fetches 1 3 6 1
BP1 Get Pages 7 10 18 7
BP2 Get Pages 24 19 42 12

TPNS Response Time .15
TPNS Responses/minute 2648
Total Commits(ETR) 239,938
CPU Busy 62.10%
ITR 385,504
Capture Ratio 90.33%
Per Commit
 CPU seconds .0362
 locks 19.72
 unlocks 1.59
 get pages 31.48
 sync reads 2.27
 buffer updates

4.10
 pages written 1.26
 async writes .32
Average used
 central storage

661MB
 CSA<16M 664KB
 CSA>16M 17.5MB
 SQA<16M 708K
 SQA>16M 13.4MB

the MXT, DSA, and ICVR parameters. Specifying
less than the recommended values for these
parameters can prevent the CMAS from being fully
operational, which in turn will keep the CICSPlex
from being operational. This can be a particularly
difficult problem to diagnose, as there are no
dumps or indications that a problem exists, other
than a timeout message (EYUEI0029E). This
information is documented in CICSPlex/SM Setup
and Administration (SC33-0784-02), pp. 69-72.

The intricacies involved in properly defining a
CICSplex are complex and are beyond the scope
of this paper (see CMG95, CICSPlex/SM ESA
Implementation and Capacity Planning for more
detailed information). On a very high level, a
Workload Manager Specification (WLMSPEC)
defines the workload. The two major parts defined
in the WLMSPEC are the TOR (TOR scope) and its
associated AORs (AOR scope). The AOR scope is
identified when the WLMSPEC is defined. For this
project the AOR scope identified two AORs as part
of a CICS system group. The TOR for this
workload was identified by ADDing its scope to the
existing WLMSPEC definition.

Updates to the CSD included specifying
DYNAMIC(YES) in the transaction definitions in the
TOR, and including the CICSPlex RDO definitions.
The CICSPlex definitions are provided for you, and
can be incorporated into your CSD by upgrading
the CSD (UPGRADE USING(EYU941G1)) and
adding the CICSPlex group to your startup list
(ADD GROUP(EYU120G1) LIST(CPTORA)). The
CSD updates are available as CSD upgrade load
modules in the CPSM120.SEYULOAD dataset.

Several CICS tables need to be modified before
using CICSPlex, including the Destination Control
Table (DCT), Journal Control Table (JCT), Program
List Table (PLT) and System Recovery Table(SRT).
These tables are documented in CICSPlex SM
Setup and Administration (SC33-0784-02) - Volume
1, Chapter 4, "Setting up a CMAS", and Chapter 5,
"Setting up a MAS".

Table 7 lists overall statistics for this configuration.
Although dynamic transaction routing is in place,
there’s only one available AOR, so no real decision
making is being done when trying to determine
where to route a transaction. Overall CPU per
transaction increases (+10.46%), and ITR drops (-
6.67%), both comparisons made to the base case.
Central storage use increased from 640 to 720
megabytes, up 12.5%. CSA usage also increased
by 60K below the line and almost one megabyte
above the line. There was not much difference
between the base case and this environment for
individual transaction statistics shown in Table 8.

Table 7 - Overall Statistics

Table 8 - Individual Transaction Statistics

STEP 4 - TOR/AOR/AOR CICSPLEX, NO
DATASHARING

The next step involved making a second AOR
available for use by the application. All of the
definitions were already in place from Step 3, so it
was just a matter of starting up the second AOR at
the beginning of the measurement.

The same RCT defined in STEP 1 was used to
start the attachment facility for the second AOR.
CICSPlex/SM based its transaction routing
decisions using the MVS Workload Manager(WLM)
and Goal mode processing. In fact, all of the
measurements for this project were run using the
WLM in Goal mode. With two AORs, a real
decision needs to be made concerning where a
transaction should be routed to keep the workload
in balance, and this extra processing time shows
up as increased CPU per transaction (+28.48%)
and a decrease in ITR (-21.24%, compared to the

TPNS Response Time .28
TPNS Responses/minute 2640
Total Commits(ETR) 240,038
CPU Busy 65.10%
ITR 368,721
Capture Ratio 90.57%
Per Commit
 CPU seconds .0380
 locks 19.76
 unlocks 1.57
 get pages 31.59
 sync reads 2.28
 buffer updates

4.11
 pages written 1.27
 async writes .33
Average used
 central storage

720MB
 CSA<16M 700KB
 CSA>16M 18.3MB
 SQA<16M 712K
 SQA>16M 13.5MB

Transaction ZMEN ZWIN ZSEC ZHIS
#Samples 3322 2889 243 487
Class 1 Elapsed “ .2561 .3706 .1811 .0768
Class 1 TCB” .0144 .0170 .0296 .0119
Class 2 Elapsed” .0364 .0237 .0384 .0197
Class 2 TCB” .0125 .0142 .0256 .0102
Selects 6 9 13 7
Inserts 0 1 4 0
Updates 1 1 2 1
Open/Close 1 2 4 1
Fetches 1 3 6 1
BP1 Get Pages 7 11 20 7
BP2 Get Pages 24 19 42 12

base case), as shown in Table 9. Average used
central storage increased slightly (+12 MB), and
CSA above the line also increased by 1 MB
compared to STEP 3.

Table 9 - Overall Statistics

Table 10 - Individual Transaction Statistics

Individual transaction CPU times also increased, as
shown in Table 10. These times are taken from the
DB2 accounting records, which are normally used
to compute chargeback information. The increases
range from 7.89% to 26.27% compared to the
base case.

STEP 5 - TOR/AOR/AOR CICSPLEX, ONE-WAY
DATASHARING

Updating the existing DB2 system for one way
datasharing was not a very difficult process, mainly
because all of the SYSPLEX infrastructure (CF, CF
links, policy, CF structures, CTCs, IOCDS changes)
was already in place.

Undoing datasharing is a little trickier, but it can be
accomplished when done with care. Datasharing
involves the use of the coupling facility, for locking
to begin with, and then for DB2 data pages when a
second member of the group is started.

Table 11 - Overall Statistics

Changes to CPU times per transaction and ITR
were very slight compared to STEP 4, as shown in
Table 11. Latch conflicts per transaction rose
from approximately .015 to .080, not a lot of
conflicts per transaction, but a significant increase
compared to non-datasharing. Likewise the
individual transaction CPU times and average used
central storage increased slightly compared to
STEP 4, shown in Table 12.

Table 12- Individual Statistics

TPNS Response Time .17
TPNS Responses/minute 2643
Total Commits(ETR) 238,878
CPU Busy 76.77%
ITR 311,160
Capture Ratio 91.22%
Per Commit
 CPU seconds .0442
 locks 19.82
 unlocks 1.59
 get pages 32.03
 sync reads 2.30
 buffer updates

4.11
 pages written 1.29
 async writes .35
Average used
 central storage

732MB
 CSA<16M 696KB
 CSA>16M 19.1MB
 SQA<16M 740K
 SQA>16M 13.7MB

Transaction ZMEN ZWIN ZSEC ZHIS
#Samples 3351 2863 227 505
Class 1 Elapsed “ .5421 .5758 .2181 .0941
Class 1 TCB” .0164 .0198 .0370 .0139
Class 2 Elapsed” .0791 .0428 .0755 .0339
Class 2 TCB” .0140 .0163 .0317 .0117
Selects 6 9 13 8
Inserts 0 1 4 0
Updates 1 1 2 1
Open/Close 1 2 4 1
Fetches 1 3 6 1
BP1 Get Pages 7 10 26 7
BP2 Get Pages 24 19 41 12

TPNS Response Time .26
TPNS Responses/minute 2634
Total Commits(ETR) 240,433
CPU Busy 78.50%
ITR 306,284
Capture Ratio 91.13%
Per Commit
 CPU seconds .0454
 locks 19.87
 unlocks 1.57
 get pages 32.16
 sync reads 2.31
 buffer updates

4.11
 pages written 1.54
 async writes .17
Average used
 central storage

765MB
 CSA<16M 710KB
 CSA>16M 18.9MB
 SQA<16M 740K
 SQA>16M 13.7MB

Transaction ZMEN ZWIN ZSEC ZHIS
#Samples 3350 2884 256 438
Class 1 Elapsed “ .4823 .5715 .1622 .0706
Class 1 TCB” .0171 .0203 .0393 .0142
Class 2 Elapsed” .0372 .0299 .0518 .0235
Class 2 TCB” .0146 .0168 .0339 .0120
Selects 6 9 13 8
Inserts 0 1 4 0
Updates 1 1 2 1
Open/Close 1 2 4 1
Fetches 1 3 6 1
BP1 Get Pages 7 10 28 7
BP2 Get Pages 24 19 42 12

Coupling facility lock activity is graphed in Figure 7.
Lock service time averaged approximately 194
microseconds, the average rate was approximately
138 locks a second. This type of activity puts very
little stress on the CPU resources of the coupling
facility, which averaged 1.4% busy. This is why the
line representing coupling facility busy is almost
hidden behind the bottom of the graph in Figure 7.

The CICSPlex/SM dynamic transaction routing
facility as implemented in these experiments based
its routing decisions solely upon load balancing
between the two AORs. No consideration was
given to things like trying to keep individual users
and their data associated with a particular AOR. In
these experiments all 1,000 users were active on
both AORs at some time during the measurement.
If users are bouncing back and forth between
AORs, there’s a good chance the user data is also
bouncing back and forth between AORs.

Activity of this sort will show up in the DB2 statistics,
namely data sharing locking and group buffer pool
activity. Since only one member of the DB2
datasharing group was active for this step, activity
to the group buffer pool was non-existent, with
approximately 2.3 locks and 1.26 unlocks
propagated to XES (global lock structure) per
transaction. The next section with two active
members of the datasharing group illustrates how
application design affects DB2 datasharing
performance.

PB080035

TOR/AOR/AOR/CICSPLEX/ONE_WAY SHARE
Coupling Facility Activity

25 50 75
0

100

200

0

100

200

Minutes

Requests per Second Request Time (microseconds)

Request
Rate

Request
Time

CF Busy

Figure 7 - Coupling Facility Lock Activity

STEP 6 - TOR/AOR/AOR CICSPLEX, TWO-WAY
DATASHARING

Two way datasharing involved relating each AOR
to a specific member of the DB2 datasharing
group. This was accomplished by coding another
RCT, similar to the original, but with a different DB2
subsystem ID (SUBID). The two AORs were then
connected to two different members of the
datasharing group.

Table 14 - Overall Statistics

Changes to CPU time per transaction and ITR were
substantial for two-way datasharing, as shown in
Table 14. CPU time increased by 46% from .0454
to .0665 seconds per transaction, and ITR
decreased by 29% from 306,284 to 217,048
transactions, compared to one-way datasharing.
Most of the change in CPU was due to substantial
increases in IRLM time per transaction. Notice
average CPU busy of over 94%. CPU busy
averaged close to 99% during the steady state
portion of the workload, explaining the drop in ETR
and increase in response time to 4 seconds.
Compared to the base case, CPU per transaction
increased by 93%, and ITR decreased by 45%.

Table 15 - Individual Transaction Statistics

Average used central storage increased by 32%
from 765 to 1,007 megabytes, CSA below the line
increased by 1 megabyte, above the line by 3
megabytes compared to one-way datasharing.
The majority of the storage increase was due to the
second member of the DB2 datasharing group.

TPNS Response Time 4.14
TPNS Responses/minute 2185
Total Commits(ETR) 204,460
CPU Busy 94.20%
ITR 217,048
Capture Ratio 91.63%
Per Commit
 CPU seconds .0665
 locks 22.16
 unlocks 3.32
 get pages 32.50
 sync reads 3.03
 buffer updates

4.15
 pages written 1.39
 async writes .28
Average used
 central storage

1007MB
 CSA<16M 809KB
 CSA>16M 22MB
 SQA<16M 744KB
 SQA>16M 14.2MB

Transaction ZMEN ZWIN ZSEC ZHIS
#Samples 2872 2570 200 369
Class 1 Elapsed “ .6729 .8440 .4387 .1953
Class 1 TCB” .0216 .0263 .0518 .0185
Class 2 Elapsed” .0861 .0818 .1464 .0611
Class 2 TCB” .0192 .0228 .0458 .0161
Selects 6 9 13 8
Inserts 0 1 4 0
Updates 1 1 2 1
Open/Close 1 2 4 1
Fetches 1 3 6 2
BP1 Get Pages 7 11 30 7
BP2 Get Pages 23 19 42 12

Compared to the base case average storage use
increased by 57% from 640 to 1,007 megabytes.

CPU times for individual transaction also increased
substantially as shown in Table 15, with an
average increase of approximately 29%.

Figure 8 - Coupling Facility Lock Activity

Figure 8 graphs lock requests to the coupling
facility, which averaged 674 locks per second and
188 microseconds response time. This is almost
five times the locking rate from the one-way
datasharing experiment. Coupling facility busy
rises to an average of 3.7%, still plenty of capacity
for growth.

The group buffer pools were contained in a
separate coupling facility, its activity is shown in
Figure 9. The coupling facility averaged 4.2%
busy for the interval. On the average 435
requests per second were made to the group
buffer pools, with response time of
approximately 290 microseconds.

Figure 9 - Coupling Facility GBP Activity

Compare this response time with that of an I/O
operation. Going all the way to the device for a
random request can cost anywhere between 10

and 15 milliseconds, or 10,000 to 15,000
microseconds. Even if the data is cached at the
device or control unit or both, response time will still
be in the 1 to 2 millisecond range, which is
between 3 and 7 times more than the response
from the coupling facility. The point is that any
perceived response time problems for coupling
facility structures are still orders of magnitude better
than the corresponding DASD response times.

Table 16 contains global locking and buffer pool
data. Two descriptions are given for each field.
The first is the title of the field from a DB2PM
report. The second is the name of the
corresponding source field in the DSECT describing
DB2 statistics as mapped by the SMF100 record.
The first two counters are the number of logical
locks (22.16) and unlocks (3.32) per transaction.
These numbers are slightly higher than the
average locks(19.87) and unlocks(1.57) for all the
other non-datasharing configurations.

Table 16 - Global Locking and Buffer Pool Activity

A portion of the logical locking and unlocking gets
translated into global lock activity, which is
displayed in the next five fields. P-Locks are used
by DB2 to serialize update activity from multiple
DB2 subsystems to a single row (data page, block,
control-interval). Approximately 1.5 PLOCK lock
and unlock requests are issued per transaction.

The next three counters are the number of
synchronous lock requests to XES per transaction.
Approximately 10 locks per transaction are
propagated to XES, in the form of lock, change or
unlock requests.

PB080035

TOR/AOR/AOR/CICSPLEX/TWO_WAY SHARE
Coupling Facility Lock Activity

25 50 75
0

200
400
600
800

1,000

0

100

200

Minutes

Requests per Second Request Time (microseconds)

Request
Rate

Request
Time

CF Busy

QTXALOCK Lock requests 22.16
QTXAUNLK Unlock requests 3.32
QTGSLPLK Lock requests (P-Locks) 1.514
QTGSUPLK Unlock Requests(P-LOCKS) 1.496
QTGSLSLM Synch.XES-Lock requests

5.663
QTGSUSLM Synch.XES-Unlock requests 2.983
QTGSCSLM Synch.XES-Change requests 1.224
QBGLXD Syn.Reads(XI)-data returned .939
QBGLXR Syn.Reads(XI)-R/W interest .057
QBGLMD Syn.Reads(NF)-data returned .639
QBGLMR Syn.Reads(NF)-R/W interest 1.848
QBGLSW Changed pages sync.written 3.539
QBGLRC Pages castout 2.067
QTGSIGLO Suspends-IRLM global contention .107
QTGSSGLO Suspends-XES global contention 1.327
QTGSFLSE Suspends-False contention .017

PB080035

TOR/AOR/AOR/CICSPLEX/TWO_WAY SHARE
Coupling Facility Group Buffer Pool Activity

25 50 75
0

200

400

600

0

100

200

300

Minutes

Requests per Second Request Time (microseconds)

Request
Rate

Request
Time

CF Busy

The next six counters detail activity to and from the
group buffer pools, again on a per commit
(transaction) basis. QBGLXD is the number of
reads from the GBP to a local BP because of cross
buffer invalidation, that is one member updates a
page which exists in the other members local buffer
pool. QBGLXR is the number of pages read from
DASD to the local BP and registered in the GBP
due to a member showing read/write interest in the
page. QBGLMD is the number of reads satisfied
from the GBP to a local BP. QBGLMR is the
number of reads satisfied from DASD, while
registering the page in the GBP. QBGLXR is the
number of pages synchronously written to the
GBP, and QBGLRC is the number of pages
castout from the group buffer pool to DASD.

“The following three fields give the counts for the
number of suspends due to global contention for
lock requests. A global contention occurs when
intersystem communication is required to resolve
the lock conflict”3 These three fields tell an awful
lot about how much it will cost your application to
share data. Suspends due to IRLM global
contention are very low, about one every ten
transactions. Suspends due to false contention
are almost non-existent, about one every 50
transactions. Suspends due to XES global
contention are very high however, averaging 1.33
per transaction. This is where the majority of the
extra CPU needed for data sharing gets
consumed.

How does one isolate the source(s) of the global
contention? One method or approach is to turn on
the lock trace by issuing the START TRACE
command illustrated below.

-START TRACE(PERFM) CLASS(6) DEST(SMF)

3 QTGS section from DSNDQWST expansion,
DSN410.SDSNMACS

This will record IFCID 0044 DB2 performance
records to the SMF datasets. This IFCID describes
lock suspend and identify requests to the IRLM.
Requests are identified by DBID and OBID, and
normally travel in pairs identifying the tablespace
and table in question. The trace was turned on for
a four minute interval. In that four minute interval,
3,768 global suspensions due to XES occurred.
Of those 3,768 suspensions, 61% were locked out
due to the LTERM table described at the beginning
of this document.

This table is used by the application to keep track
of status for a particular user, and is updated after
every commit. Because CICSPlex makes
transaction routing decisions based on capacity
and not on location of data, a single user may be
bounced back and forth between AORs, and their
associated LTERM data would also be along for
the ride, not only between AORs but between
different members of the DB2 datasharing group.
Refer back to Table 16, which indicates almost one
cross buffer invalidation per transaction. The
LTERM table is most likely the cause of the
invalidation, because the user has been switched
from one AOR/DB2 combination to the other
AOR/DB2 combination.

CONCLUSIONS

This application is at the high end of the spectrum
in terms of datasharing overhead, with the main
reason for this being the application design. The
final full blown CICSPlex DB2 datasharing
environment consumes almost twice the CPU
power of the initial single region no datasharing
design.

At first glance this may seem like a stiff price to pay.
But when you consider the added flexibilty
provided by datasharing, the automated load
balancing provided by CICSPlex and the MVS
workload manager, and the automated recovery
and failover procedures provided by MVS and
ARM, maybe it is worth the price, especially in
environments approaching true 24X7 operations.
Another point to consider is the scalability of the
final setup. Adding more images in the Sysplex,
and the associated AORs and DB2 datasharing
members, will cause almost immeasurable
differences in CPU usage, but will substantially
expand the application’s capacity for performance.
The big CPU hit occurs when a second DB2
member is activated in the datasharing group.
Activating subsequent members has very little
effect on application resource consumption.

We ran out of time before we had a chance to use
the second LPAR of the test machine. It would
have been nice to see the ultimate capacity of all
eight engines by starting up one of the AORs and
DB2s in the second LPAR. And it would have
been that easy, issue the start commands from the
other MVS console. No job, JCL, or task changes
are necessary. CICS is smart enough to use the
coupling facility for communications between a TOR
and an AOR in different images of the same
Sysplex.

The flexibility offered with MVS Sysplex, CICSPlex,
and DB2Plex is significant as shown in this paper.
The use of each facility should be studied in
relation to the business demands of the
application. This paper shows that increasing
resources can be accomplished with little or no
application change.

ACKNOWLEDGEMENTS

A lot of people worked really hard to pull off this
project, right in the middle of corporate re-shuffling
at both the vendor's and customer's sites. At one
particular low-point, when we were struggling to
get two way datasharing working, I ventured
downstairs to Sysprog row to ask some more favors
of the CICS and MVS support people. Michael
Wong and Rich Baker had already bent over
backwards to provide the support we needed, and
I was running out of ways to motivate them for still
more help.

It turns out that both Michael and Rich are avid
music fans, as is the author. I gave them both
copies of Christmas at the Mission, a CD recently
recorded by The Ohlone Chamber Singers
(www.chambersingers.org), led by my friend and
fellow musician Dennis Keller. I was hoping that
the gift of music would help make their tasks a little
more palatable.

We eventually finished the project, and after
presenting the results, Rich came up and started
extolling the fine job we had done. I was getting a
little embarrassed at all the praise, after all, the
presentation was in black and white, and I hadn't
even told any good jokes. Turns out he was
talking about the CD.

The next time you're stuck trying to implement a
particularly complicated system or application,
consider adding music to the mips and the memory.
The ROI can be truly amazing.

.

	Introduction - Initial Results
	CPU Seconds per Transaction
	Internal Throughput Rates
	Central Storage Use
	Operating Environment
	Sysplex Operating Environment
	Millennium Configuration
	Transaction Profiles
	Transaction Statistics

	Step 1 - Single CICS Region, No CICSPlex, No Datasharing
	CSD Extract Preparation
	Overall Statistics
	Individual Transaction Statistics
	DASD Cache Statistics
	XCF CTC Activity

	Step 2 - TOR/AOR, No CICSPlex, No Datasharing
	Overall Statistics
	Individual Transaction Statistics

	Step 3 - TOR/AOR, CICSPlex, No Datasharing
	Overall Statistics
	Individual Transaction Statistics

	Step 4 - TOR/AOR/AOR Cicsplex, No Datasharing
	Overall Statistics
	Individual Transaction Statistics

	Step 5 - TOR/AOR/AOR Cicsplex, 1-way Datasharing
	Overall Statistics
	Individual Statistics
	Coupling Facility Lock Activity

	Step 6 - TOR/AOR/AOR CICSPlex, 2-way Datasharing
	Overall Statistics
	Individual Transaction Statistics
	Coupling Facility Lock Activity
	Coupling Facility Group Buffer Pool Activity
	Global Locking and Buffer Pool Activity

	Conclusions
	Acknowledgements

